Datasheet ZXLD381 (Diodes) - 4

BeschreibungSingle Or Multi Cell Led Driver Solution
Seiten / Seite9 / 4 — A Product Line of. ZXLD381. Device Description.
Dateiformat / GrößePDF / 210 Kb

A Product Line of. ZXLD381. Device Description.

A Product Line of ZXLD381 Device Description

Modelllinie für dieses Datenblatt

Textversion des Dokuments

A Product Line of
Diodes Incorporated
ZXLD381 Device Description
The ZXLD381 is a simple PFM, DC-DC controller combined with a high performance internal switching transistor, enabling the production of a high efficiency boost converter for use in single cell applications. A block diagram is shown for the ZXLD381 in Fig 1.

When power is applied, an oscillator within the pulse control block forces the internal switching transistor to switch on to start an energy charge cycle. The low saturation voltage switch pulls the VOUT pin close to ground which forces the supply voltage across the external inductor L1. This causes a current to build up, storing energy in the inductor. During this phase, switch current and supply voltage are monitored and used by the pulse control circuit to determine the optimum drive conditions and on-time. At the end of the energy charge cycle, the internal switch is turned off rapidly, interrupting the current flow through L1 which causes the voltage on VOUT to rise dramatically. When the voltage on VOUT reaches the load LED's forward (on) voltage, the inductor current is transferred from the internal switch to the LED, starting the energy discharge cycle. With the voltage across the inductor reversed, the current flowing through it (and the LED) now falls. When the inductor current reaches zero, the voltage on the VOUT pin falls back towards VCC. This action is sensed by the pulse control circuit, which initiates the next energy charge cycle. Except for low level losses, all the energy stored in the inductor during a charge cycle will be channeled to the load LED during the following discharge cycle. The current fed into the load LED has a sawtooth waveform, the average (DC) value of which is kept constant by the pulse control circuit for varying supply voltage and temperature. It is possible to change the output current given by the ZXLD381 by changing the value of inductor L1. The larger the inductance of L1, the lower the output current. A table/graph showing the relationship between inductance and output current is given later in this datasheet. Since the output current of the ZXLD381 is a sawtooth waveform, its peak value is substantially larger than the DC/average value. The table also provides this data. The internal switching transistor has a minimum collector-emitter breakdown voltage of 20V and this sets the maximum load voltage allowable. The minimum value is set by a feature of the pulse control circuit that requires the load voltage to be at least 0.8V greater than VCC. (The device will function with load voltages smaller than this but output current regulation will be impaired.) Higher than nominal load voltages will lower the average (DC) output current generated for a given inductor value.

ZXLD381 4 of 9 May 2010 Document number: DS32188 Rev. 3 - 2
© Diodes Incorporated