LTC2372-16 c onverTer characTerisTics The l denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at TA = 25°C. (Note 4) SYMBOL PARAMETERCONDITIONSMINTYPMAXUNITS Full-Scale Error Drift Fully Differential REFBUF = 4.096V (REFBUF Overdriven) (Note 9) 0.2 ppm/°C Pseudo-Differential Unipolar REFBUF = 4.096V (REFBUF Overdriven) (Note 9) 0.2 ppm/°C Pseudo-Differential Bipolar REFBUF = 4.096V (REFBUF Overdriven) (Note 9) 0.2 ppm/°C Full-Scale Error Match Fully Differential REFBUF = 4.096V (REFBUF Overdriven) (Note 9) l –6 ±0.5 6 LSB Pseudo-Differential Unipolar REFBUF = 4.096V (REFBUF Overdriven) (Note 9) l –7 ±1 7 LSB Pseudo-Differential Bipolar REFBUF = 4.096V (REFBUF Overdriven) (Note 9) l –8 ±1 8 LSB DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,otherwise specifications are at TA = 25°C and AIN = –1dBFS. (Notes 4, 10) SYMBOLPARAMETERCONDITIONSMINTYPMAXUNITS SINAD Signal-to-(Noise + Distortion) Ratio Fully Differential fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven) l 93 96 dB Pseudo-Differential Unipolar f l IN = 1kHz, REFIN = 2.048V (REFIN Overdriven) 90 93.4 dB Pseudo-Differential Bipolar f l IN = 1kHz, REFIN = 2.048V (REFIN Overdriven) 90 93.4 dB Fully Differential fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 97 dB Pseudo-Differential Unipolar fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 94.5 dB Pseudo-Differential Bipolar fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 94.5 dB Fully Differential fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1 95 dB Pseudo-Differential Bipolar fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1 91.5 dB SNR Signal-to-Noise Ratio Fully Differential fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven) l 93 96 dB Pseudo-Differential Unipolar f l IN = 1kHz, REFIN = 2.048V (REFIN Overdriven) 90 93.4 dB Pseudo-Differential Bipolar f l IN = 1kHz, REFIN = 2.048V (REFIN Overdriven) 90 93.4 dB Fully Differential fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 97 dB Pseudo-Differential Unipolar fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 94.5 dB Pseudo-Differential Bipolar fIN = 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9) 94.5 dB Fully Differential fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1 95 dB Pseudo-Differential Bipolar fIN = 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1 91.5 dB 237216f 4 For more information www.linear.com/LTC2372-16 Document Outline Features Applications Typical Application Description Absolute Maximum Ratings Order Information Pin Configuration Electrical Characteristics Converter Characteristics Dynamic Accuracy Internal Reference Characteristics Reference Buffer Characteristics Digital Inputs and Digital Outputs Power Requirements ADC Timing Characteristics Electrical Characteristics Typical Performance Characteristics Pin Functions Functional Block Diagram Timing Diagram Applications Information Timing Diagrams Board Layout Schematics Package Description Typical Application Related Parts