Datasheet Texas Instruments 74LVTH16244ADLRG4 — Datenblatt
Hersteller | Texas Instruments |
Serie | SN74LVTH16244A |
Artikelnummer | 74LVTH16244ADLRG4 |
3,3-V-ABT-16-Bit-Puffer / -Treiber mit 3-Zustands-Ausgängen 48-SSOP -40 bis 125
Datenblätter
3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS, SNx4LVTH16244A datasheet
PDF, 968 Kb, Revision: U, Datei veröffentlicht: Oct 11, 2013
Auszug aus dem Dokument
Preise
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Verpackung
Pin | 48 |
Package Type | DL |
Industry STD Term | SSOP |
JEDEC Code | R-PDSO-G |
Package QTY | 1000 |
Carrier | LARGE T&R |
Device Marking | LVTH16244A |
Width (mm) | 7.49 |
Length (mm) | 15.88 |
Thickness (mm) | 2.59 |
Pitch (mm) | .635 |
Max Height (mm) | 2.79 |
Mechanical Data | Herunterladen |
Parameter
Bits | 16 |
F @ Nom Voltage(Max) | 160 Mhz |
ICC @ Nom Voltage(Max) | 0.005 mA |
Operating Temperature Range | -40 to 125,-40 to 85 C |
Output Drive (IOL/IOH)(Max) | -32/64 mA |
Package Group | SSOP |
Package Size: mm2:W x L | 48SSOP: 164 mm2: 10.35 x 15.88(SSOP) PKG |
Rating | Catalog |
Schmitt Trigger | No |
Technology Family | LVT |
VCC(Max) | 3.6 V |
VCC(Min) | 2.7 V |
Voltage(Nom) | 3.3 V |
tpd @ Nom Voltage(Max) | 4.1 ns |
Öko-Plan
RoHS | Compliant |
Anwendungshinweise
- LVT Family Characteristics (Rev. A)PDF, 98 Kb, Revision: A, Datei veröffentlicht: Mar 1, 1998
To address the need for a complete low-voltage interface solution, Texas Instruments has developed a new generation of logic devices capable of mixed-mode operation. The LVT series relies on a state-of-the-art submicron BiCMOS process to provide up to a 90% reduction in static power dissipation over ABT. LVT devices solve the system need for a transparent seam between the low-voltage and 5-V secti - LVT-to-LVTH ConversionPDF, 84 Kb, Datei veröffentlicht: Dec 8, 1998
Original LVT devices that have bus hold have been redesigned to add the High-Impedance State During Power Up and Power Down feature. Additional devices with and without bus hold have been added to the LVT product line. Design guidelines and issues related to the bus-hold features, switching characteristics, and timing requirements are discussed. - Bus-Hold CircuitPDF, 418 Kb, Datei veröffentlicht: Feb 5, 2001
When designing systems that include CMOS devices, designers must pay special attention to the operating condition in which all of the bus drivers are in an inactive, high-impedance condition (3-state). Unless special measures are taken, this condition can lead to undefined levels and, thus, to a significant increase in the device?s power dissipation. In extreme cases, this leads to oscillation of - 16-Bit Widebus Logic Families in 56-Ball 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B)PDF, 895 Kb, Revision: B, Datei veröffentlicht: May 22, 2002
TI?s 56-ball MicroStar Jr.E package registered under JEDEC MO-225 has demonstrated through modeling and experimentation that it is an optimal solution for reducing inductance and capacitance improving thermal performance and minimizing board area usage in integrated bus functions. Multiple functions released in the 56-ball MicroStar Jr.E package have superior performance characteristics compa - Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A)PDF, 105 Kb, Revision: A, Datei veröffentlicht: Aug 1, 1997
The spectrum of bus-interface devices with damping resistors or balanced/light output drive currently offered by various logic vendors is confusing at best. Inconsistencies in naming conventions and methods used for implementation make it difficult to identify the best solution for a given application. This report attempts to clarify the issue by looking at several vendors? approaches and discussi - Understanding Advanced Bus-Interface Products Design GuidePDF, 253 Kb, Datei veröffentlicht: May 1, 1996
- Power-Up 3-State (PU3S) Circuits in TI Standard Logic DevicesPDF, 209 Kb, Datei veröffentlicht: May 10, 2002
Many telecom and networking applications require that cards be inserted and extracted from a live backplane without interrupting data or damaging components. To achieve this interface terminals of the card must be electrically isolated from the bus system during insertion or extraction from the backplane. To facilitate this Texas Instruments provides bus-interface and logic devices with features - Implications of Slow or Floating CMOS Inputs (Rev. D)PDF, 260 Kb, Revision: D, Datei veröffentlicht: Jun 23, 2016
- Live InsertionPDF, 150 Kb, Datei veröffentlicht: Oct 1, 1996
Many applications require the ability to exchange modules in electronic systems without removing the supply voltage from the module (live insertion). For example an electronic telephone exchange must always remain operational even during module maintenance and repair. To avoid damaging components additional circuitry modifications are necessary. This document describes in detail the phenomena tha - Input and Output Characteristics of Digital Integrated CircuitsPDF, 1.7 Mb, Datei veröffentlicht: Oct 1, 1996
This report contains a comprehensive collection of the input and output characteristic curves of typical integrated circuits from various logic families. These curves go beyond the information given in data sheets by providing additional details regarding the characteristics of the components. This knowledge is particularly useful when for example a decision must be made as to which circuit shou
Modellreihe
Serie: SN74LVTH16244A (12)
Herstellerklassifikation
- Semiconductors > Logic > Buffer/Driver/Transceiver > Non-Inverting Buffer/Driver